LEYES DE LOS GASES

Leyes de los gases 



Introducción  A continuación, se desarrollara un laboratorio de química (GASES) se realizara un laboratorio por cada ley y continuo a esto una serie de ejercicios para reforzar la temática vista.

Objetivos:
 ·   Dar  conocer las diferentes leyes (LEY DE BOYLE, CHARLES, AVOGADRO, GASES IDEALES, GAY- LUSSAC Y GENERALIZADA).


·       ·     Ser una útil herramienta teórica y de aprendizaje en línea, ayudando al usuario a comprender mejor ciertos procesos químicos.

·       ·     Reforzar los conocimientos acerca de las leyes de los gases.

·        ·   Realizar correctamente ejercicios acerca de estas.

Marco Teórico:
AMEDEO AVOGADRO
Químico y físico italiano. Nació el 9 de junio de 1776 en Turín, Italia y murió el 9 de julio de 1856.
En 1792 se graduó como doctor en derecho canónico, pero no ejerció. En vez de ello, mostró verdadera pasión por la física y la química, y una gran destreza para las matemáticas. 
Recapacitando sobre el descubrimiento de Charles (publicado por Gay -Lussac) de que todos los gases se dilatan en la misma proporción con la temperatura decidió que esto debía implicar que cualquier gas a una temperatura dada debía contener el mismo número de partículas por unidad de volumen. Avogadro tuvo la precaución de especificar que las partículas no tenían por qué ser átomos individuales sino que podían ser combinaciones de átomos (lo que hoy llamamos moléculas).
Con esta consideración pudo explicar con facilidad la ley de la combinación de volúmenes que había sido anunciada por Gay-Lussac y, basándose en ella, dedujo que el oxígeno era 16 veces más pesado que el hidrógeno y no ocho como defendía Dalton en aquella época.
Enunció la llamada hipótesis de Avogadro: iguales volúmenes de gases distintos contienen el mismo número de moléculas, si ambos se encuentran a igual temperatura y presión.
Ese número, equivalente a 6,022· 1023, es constante, según publicó en 1811. Como ha ocurrido muchas veces a lo largo de la historia las propuestas de Avogadro no fueron tomadas en cuenta, es más, Dalton, Berzelius y otros científicos de la época despreciaron la validez de su descubrimiento y la comunidad científica no aceptó de inmediato las conclusiones de Avogadro por tratarse de un descubrimiento basado en gran medida en métodos empíricos y válido solamente para los gases reales sometidos a altas temperaturas pero a baja presión.
Sin embargo, la ley de Avogadro permite explicar por qué los gases se combinan en proporciones simples.
Fue su paisano Cannizaro quién, 50 años más tarde, se puso a su favor y la hipótesis de Avogadro empezó a ser aceptada. A partir de entonces empezó a hablarse del número Avogadro.
LEY DE AVOGADRO
Relación entre la cantidad de gas y su volumen
Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura y la presión. Recuerda que la cantidad de gas la medimos en moles.
¿Por qué ocurre esto?
Vamos a suponer que aumentamos la cantidad de gas. Esto quiere decir que al haber mayor número de moléculas aumentará la frecuencia de los choques con las paredes del recipiente lo que implica (por un instante) que la presión dentro del recipiente es mayor que la exterior y esto provoca que el émbolo se desplace hacia arriba inmediatamente. Al haber ahora mayor distancia entre las paredes (es decir, mayor volumen del recipiente) el número de choques de las moléculas contra las paredes disminuye y la presión vuelve a su valor original.
Según hemos visto en la animación anterior, también podemos expresar la ley de Avogadro así:
V/n=k
(el cociente entre el volumen y la cantidad de gas es constante)
Supongamos que tenemos una cierta cantidad de gas n1 que ocupa un volumen V1 al comienzo del experimento. Si variamos la cantidad de gas hasta un nuevo valor n2, entonces el volumen cambiará a V2, y se cumplirá:
V1/n1= V2/n2
que es otra manera de expresar la ley de Avogadro.

ROBERT BOYLE 
Nacido en 1627, el menor de los catorce hijos del conde de Cork, estudió en las mejores universidades de Europa. Descubrió los indicadores, sustancias que permiten distinguir los ácidos de las bases. En 1659, con la ayuda de Robert Hooke, descubrió la ley que rige el comportamiento de los muelles, perfeccionó la bomba de aire para hacer el vacío que se utilizó en la minería para eliminar el agua de las galerías en las que trabajan los mineros.
Atacó a la Alquimia y a los alquimistas, que anunciaban que podían convertir cualquier metal en oro.
Definió la Química como una ciencia y enunció la primera definición moderna de elemento químico, como sustancia que no es posible descomponer en otras.
En 1661 publicó el primer libro moderno de química El Químico Escéptico en el que explicaba la mayoría de sus descubrimientos. Fue miembro de la Royal Society, institución que perdura en la actualidad, y participó activamente en sus reuniones hasta su fallecimiento.
En 1660, en una obra titulada Sobre la Elasticidad del Aire anunció su descubrimiento sobre la relación entre el volumen de un gas y su presión.
Parece que Boyle no especificó en sus trabajos que sus experiencias de la relación entre el volumen y presión los realiza a temperatura constante, quizá porque lo hizo así y lo dió por supuesto. Lo cierto es que, en defensa del rigor científico, hay que esperar a que en 1676 otro físico, el francés Edme Mariotte (1630-1684), encuentre de nuevo los mismos resultados y aclare que la relación PV=constante es sólo válida si se mantiene constante la temperatura. Por eso la ley de Boyle está referenciada en muchas ocasiones como Ley de Boyle y Mariotte.

LEY DE BOYLE
Relación entre la presión y el volumen de un gas cuando la temperatura es constante
Fue descubierta por Robert Boyle en 1662. Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676. Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle y Mariotte.
La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante.


¿Por qué ocurre esto?
Al aumentar el volumen, las partículas (átomos o moléculas) del gas tardan más en llegar a las paredes del recipiente y por lo tanto chocan menos veces por unidad de tiempo contra ellas. Esto significa que la presión será menor ya que ésta representa la frecuencia de choques del gas contra las paredes.
Cuando disminuye el volumen la distancia que tienen que recorrer las partículas es menor y por tanto se producen más choques en cada unidad de tiempo: aumenta la presión.
Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor.
Como hemos visto, la expresión matemática de esta ley es:
PV=k
(el producto de la presión por el volumen es constante)
Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1V1=P2V2
que es otra manera de expresar la ley de Boyle

JACQUES CHARLES
Jacques Alexandre César Charles, químico, físico y aeronauta francés, nació en Beaugency (Loiret) el 2 de noviembre de 1746 y falleció en París el 7 de abril de 1823.
Al tener noticias de las experiencias de los hermanos Montgolfier con su globo aerostático propuso la utilización del hidrógeno, que era el gas más ligero que se conocía entonces, como medio más eficiente que el aire para mantener los globos en vuelo.
En 1783 construyó los primeros globos de hidrógeno y subió él mismo hasta una altura de unos 2 km, experiencia que supuso la locura por la aeronáutica que se desató en la época.
Su descubrimiento más importante fue en realidad un redescubrimiento ya que en 1787 retomó un trabajo anterior de Montons y demostró que los gases se expandían de la misma manera al someterlos a un mismo incremento de temperatura.
El paso que avanzó Charles fue que midió con más o menos exactitud el grado de expansión observó que por cada grado centígrado de aumento de la temperatura el volumen del gas aumentaba 1/275 del que tenía a 0°C . Esto significaba que a una temperatura de -275 °C el volumen de un gas sería nulo (según dicha ley) y que no podía alcanzarse una temperatura más baja.
Dos generaciones más tarde Kelvin fijó estas ideas desarrollando la escala absoluta de temperaturas y definiendo el concepto de cero absoluto.
Charles no público sus experimentos y hacia 1802 Gay-Lussac publicó sus observaciones sobre la relación entre el volumen y la temperatura cuando se mantiene constante la presión por lo que a la ley de Charles también se le llama a veces ley de Charles y Gay-Lussac.
LEY DE CHARLES
Relación entre la temperatura y el volumen de un gas cuando la presión es constante
En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y observó que cuando se aumentaba la temperatura el volumen del gas también aumentaba y que al enfriar el volumen disminuía.
¿Por qué ocurre esto?
Cuando aumentamos la temperatura del gas las moléculas se mueven con más rapidez y tardan menos tiempo en alcanzar las paredes del recipiente. Esto quiere decir que el número de choques por unidad de tiempo será mayor. Es decir se producirá un aumento (por un instante) de la presión en el interior del recipiente y aumentará el volumen (el émbolo se desplazará hacia arriba hasta que la presión se iguale con la exterior).
Lo que Charles descubrió es que si la cantidad de gas y la presión permanecen constantes, el cociente entre el volumen y la temperatura siempre tiene el mismo valor.
Matemáticamente podemos expresarlo así:
VT=k
(el cociente entre el volumen y la temperatura es constante)
Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una temperatura T1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se cumplirá:
V1T1=V2T2
que es otra manera de expresar la ley de Charles.
Esta ley se descubre casi ciento cuarenta años después de la de Boyle debido a que cuando Charles la enunció se encontró con el inconveniente de tener que relacionar el volumen con la temperatura Celsius ya que aún no existía la escala absoluta de temperatura.

JOSEPH LOUIS GAY-LUSSAC
Químico y físico francés, nacido el 6 de diciembre de 1778, en Saint-Léonard-de-Noblat, y fallecido el 9 de mayo de 1850, en París.
Además de ocupar cargos políticos de importancia, Gay-Lussac fue catedrático de Física (a partir de 1808) en la Universidad de la Sorbona, así como catedrático de Química (a partir de 1809) en el Instituto Politécnico de París.
En 1802 publicó los resultados de sus experimentos que, ahora conocemos como Ley de Gay-Lussac. Esta ley establece, que, a volumen constante, la presión de una masa fija de un gas dado es directamente proporcional a la temperatura Kelvin.
En el campo de la física llevó a cabo, en 1804, dos ascensiones en globo, hasta altitudes de 7.000 metros, en las que estudió la composición de las capas altas de la atmósfera y el magnetismo terrestre.
Entre 1805 y 1808 dió a conocer la ley de los volúmenes de combinación, que afirma que los volúmenes de los gases que intervienen en una reacción química (tanto de reactivos como de productos) están en la proporción de números enteros sencillos.
En relación con estos estudios, investigó junto con el naturalista alemán Alexander von Humboldt, la composición del agua, descubriendo que se compone de dos partes de hidrógeno por una de oxígeno.
En 1811 dió forma a la ley que Charles había descubierto en 1787 sobre la relación entre el volumen y la temperatura, pero que había quedado sin publicar. Este mismo año, el químico francés Courtois, por medio de una reacción química produjo un gas de color violeta que Gay-Lussac identificó como un nuevo elemento y le dio el nombre de yodo, que en griego significa violeta.
Estudió también el ácido cianhídrico así como el gas de hulla. En el año 1835 creó un procedimiento para la producción de ácido sulfúrico basado en el empleo de la torre llamada de Gay-Lussac.
Gracias a sus mediciones químicas de precisión y a sus procedimientos exactos de trabajo, logró obtener varios elementos químicos y establecer las bases del análisis volumétrico convirtiéndolo en una disciplina independiente.
En la lucha de prestigio entre Francia e Inglaterra, Napoleón suministró fondos a Gay-Lussac para que construyera una batería eléctrica mayor que la de Davy, y así encontrar nuevos elementos.
La batería no fue necesaria, pues Gay-Lussac y Thenard empleando el potasio descubierto por Davy, aislaron el boro sin necesidad de la electricidad. Al tratar óxido de boro con potasio se produjo el elemento boro.
En 1809 Gay-Lussac trabajó en la preparación del potasio e investigó las propiedades del cloro. En el campo de la industria química desarrolló mejoras en varios procesos de fabricación y ensayo. En 1831 fue elegido miembro de la Cámara de los Diputados y en 1839 del Senado.
LEY DE GAY- LUSSAC
Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800.
Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante
¿Por qué ocurre esto?
Al aumentar la temperatura las moléculas del gas se mueven más rápidamente y por tanto aumenta el número de choques contra las paredes, es decir aumenta la presión ya que el recipiente es de paredes fijas y su volumen no puede cambiar.
Gay-Lussac descubrió que, en cualquier momento de este proceso, el cociente entre la presión y la temperatura siempre tenía el mismo valor:
PT=k
(el cociente entre la presión y la temperatura es constante)
Supongamos que tenemos un gas que se encuentra a una presión P1 y a una temperatura T1 al comienzo del experimento. Si variamos la temperatura hasta un nuevo valor T2, entonces la presión cambiará a P2, y se cumplirá:
P1T1=P2T2
que es otra manera de expresar la ley de Gay-Lussac.
Esta ley, al igual que la de Charles, está expresada en función de la temperatura absoluta. Al igual que en la ley de Charles, las temperaturas han de expresarse en Kelvin.
LEY DE LOS GASES IDEALES
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
En 1648, el químico Jan Baptista van Helmont creó el vocablo gas, a partir del término griego kaos (desorden) para definir las génesis características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos y se utiliza para designar uno de los estados de la materia.
La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante. o en términos más sencillos:
A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce. Matemáticamente se puede expresar así:
{\displaystyle PV=k\,}
donde k es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:\displaystyle P_{1}V_{1}=P_{2}V_{2}\,}
Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, aparentemente de manera independiente por August Krönig en 18561 y Rudolf Clausius en 1857.2 La constante universal de los gases se descubrió y se introdujo por primera vez en la ley de los gases ideales en lugar de un gran número de constantes de gases específicas descriptas por Dmitri Mendeleev en 1874.
LEY GENERALIZADA DE LOS GASES
La ley combinada de los gases o ley general de los gases es una ley de los gases que combina la ley de Boyle, la ley de Charles y la ley de Gay-Lussac. Estas leyes matemáticamente se refieren a cada una de las variables termodinámicas con relación a otra mientras todo lo demás se mantiene constante. La ley de Charles establece que el volumen y la temperatura son directamente proporcionales entre sí, siempre y cuando la presión se mantenga constante. La ley de Boyle afirma que la presión y el volumen son inversamente proporcionales entre sí a temperatura constante. Finalmente, la ley de Gay-Lussac introduce una proporcionalidad directa entre la temperatura y la presión, siempre y cuando se encuentre a un volumen constante. La interdependencia de estas variables se muestra en la ley de los gases combinados, que establece claramente que:
La relación entre el producto presión-volumen y la temperatura de un sistema permanece constante.
Matemáticamente puede formularse como:
PV/T= K
{\displaystyle \qquad {\frac {PV}{T}}=K}PPdonde:
·         P es la presión
·         V es el volumen
·         T es la temperatura absoluta (en kelvins)
·         K es una constante
 (con unidades de energía dividido por la temperatura) que dependerá de la cantidad de gas considerado.
Otra forma de expresarlo es la siguiente:
P1V1/T1= P2V2/T2
{\displaystyle \qquad {\frac {P_{1}V_{1}}{T_{1}}}={\frac {P_{2}V_{2}}{T_{2}}}}
donde presión, volumen y temperatura se han medido en dos instantes distintos 1 y 2 para un mismo sistema.
En adición de la ley de Avogadro al rendimiento de la ley de gases combinados se obtiene la ley de los gases ideales.






Ejercicios de química 



Ley de Charles 
Para poder realizar los ejercicios vi el siguiente tutorial 


Ejercicio #1 

Ejercicio # 2



Ejercicio # 3



Ley de Gases ideales 
Veremos el siguiente tutorial donde nos explican paso a paso 



Ejercicio # 1 


 


Ejercicio # 2 



Ejercicio 3




Ley de Gay-Lussac 

Veamos el siguiente tutorial para poder realizar bien los ejercicios



Ejercicio # 1 





Ejercicio # 2 




Ejercicio # 3




 Ley de Boyle 

Para poder entender mejor el tema ver el siguiente linke me dio una gran ayuda 


Ejercicio # 1

 

Ejercicio # 2


Ejercicio # 3 



Ejercios de Avogadro 
Veremos el siguiente link para realizar procesos bien hechos 




Ley de Avogadro 
a)



b)

c)


Comentarios

Entradas más populares de este blog